Ressources

Les datasets juridiques ( avec papiers associés )

Raphaël d'Assignies
2 septembre 2023

EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain

Abstract : Existing summarization datasets come with two main drawbacks: (1) They tend to focus on overly exposed domains, such as news articles or wiki-like texts, and (2) are primarily monolingual, with few multilingual datasets. In this work, we propose a novel dataset, called EUR-Lex-Sum, based on manually curated document summaries of legal acts from the European Union law platform (EUR-Lex). Documents and their respective summaries exist as cross-lingual paragraph-aligned data in several of the 24 official European languages, enabling access to various cross-lingual and lower-resourced summarization setups. We obtain up to 1,500 document/summary pairs per language, including a subset of 375 cross-lingually aligned legal acts with texts available in all 24 languages. In this work, the data acquisition process is detailed and key characteristics of the resource are compared to existing summarization resources. In particular, we illustrate challenging sub-problems and open questions on the dataset that could help the facilitation of future research in the direction of domain-specific cross-lingual summarization. Limited by the extreme length and language diversity of samples, we further conduct experiments with suitable extractive monolingual and cross-lingual baselines for future work.

Lien

CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review

Abstract : Many specialized domains remain untouched by deep learning, as large labeled datasets require expensive expert annotators. We address this bottleneck within the legal domain by introducing the Contract Understanding Atticus Dataset (CUAD), a new dataset for legal contract review. CUAD was created with dozens of legal experts from The Atticus Project and consists of over 13,000 annotations. The task is to highlight salient portions of a contract that are important for a human to review. We find that Transformer models have nascent performance, but that this performance is strongly influenced by model design and training dataset size. Despite these promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community.

A Statutory Article Retrieval Dataset in French

Abstract : Statutory article retrieval is the task of automatically retrieving law articles relevant to a legal question. While recent advances in natural language processing have sparked considerable interest in many legal tasks, statutory article retrieval remains primarily untouched due to the scarcity of large-scale and high-quality annotated datasets. To address this bottleneck, we introduce the Belgian Statutory Article Retrieval Dataset (BSARD), which consists of 1,100+ French native legal questions labeled by experienced jurists with relevant articles from a corpus of 22,600+ Belgian law articles. Using BSARD, we benchmark several state-of-the-art retrieval approaches, including lexical and dense architectures, both in zero-shot and supervised setups. We find that fine-tuned dense retrieval models significantly outperform other systems. Our best performing baseline achieves 74.8% R@100, which is promising for the feasibility of the task and indicates there is still room for improvement. By the specificity of the domain and addressed task, BSARD presents a unique challenge problem for future research on legal information retrieval. Our dataset and source code are publicly available.

MultiEURLEX — A multi-lingual and multi-label legal document classification dataset for zero-shot cross-lingual transfer

Abstract : We introduce MULTI-EURLEX, a new multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. We highlight the effect of temporal concept drift and the importance of chronological, instead of random splits. We use the dataset as a testbed for zero-shot cross-lingual transfer, where we exploit annotated training documents in one language (source) to classify documents in another language (target). We find that fine-tuning a multilingually pretrained model (XLM-ROBERTA, MT5) in a single source language leads to catastrophic forgetting of multilingual knowledge and, consequently, poor zero-shot transfer to other languages. Adaptation strategies, namely partial fine-tuning, adapters, BITFIT, LNFIT, originally proposed to accelerate fine-tuning for new end-tasks, help retain multilingual knowledge from pretraining, substantially improving zero-shot cross-lingual transfer, but their impact also depends on the pretrained model used and the size of the label set.

LexGLUE : A Benchmark Dataset for Legal Language Understanding in English

Abstract : Laws and their interpretations, legal arguments and agreements\ are typically expressed in writing, leading to the production of vast corpora of legal text. Their analysis, which is at the center of legal practice, becomes increasingly elaborate as these collections grow in size. Natural language understanding (NLU) technologies can be a valuable tool to support legal practitioners in these endeavors. Their usefulness, however, largely depends on whether current state-of-the-art models can generalize across various tasks in the legal domain. To answer this currently open question, we introduce the Legal General Language Understanding Evaluation (LexGLUE) benchmark, a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks in a standardized way. We also provide an evaluation and analysis of several generic and legal-oriented models demonstrating that the latter consistently offer performance improvements across multiple tasks.

Building Legal Datasets

Abstract : Data-centric AI calls for better, not just bigger, datasets. As data protection laws with extra-territorial reach proliferate worldwide, ensuring datasets are legal is an increasingly crucial yet overlooked component of « better ». To help dataset builders become more willing and able to navigate this complex legal space, this paper reviews key legal obligations surrounding ML datasets, examines the practical impact of data laws on ML pipelines, and offers a framework for building legal datasets.

Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset

One concern with the rise of large language models lies with their potential for significant harm, particularly from pretraining on biased, obscene, copyrighted, and private information. Emerging ethical approaches have attempted to filter pretraining material, but such approaches have been ad hoc and failed to take context into account. We offer an approach to filtering grounded in law, which ha directly addressed the tradeoffs in filtering material. First, we gather and make available the Pile of Law, a 256GB (and growing) dataset of open-source English-language legal and administrative data, covering court opinions, contracts, administrative rules, and legislative records. Pretraining on the Pile of Law may help with legal tasks that have the promise to improve access to justice. Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons for researchers and discuss how our dataset reflects these norms. Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data, providing an exciting new research direction in model-based processing.

LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models

Abstract : The advent of large language models (LLMs) and their adoption by the legal community has given rise to the question: what types of legal reasoning can LLMs perform? To enable greater study of this question, we present LegalBench: a collaboratively constructed legal reasoning benchmark consisting of 162 tasks covering six different types of legal reasoning. LegalBench was built through an interdisciplinary process, in which we collected tasks designed and hand-crafted by legal professionals. Because these subject matter experts took a leading role in construction, tasks either measure legal reasoning capabilities that are practically useful, or measure reasoning skills that lawyers find interesting. To enable cross-disciplinary conversations about LLMs in the law, we additionally show how popular legal frameworks for describing legal reasoning – which distinguish between its many forms – correspond to LegalBench tasks, thus giving lawyers and LLM developers a common vocabulary. This paper describes LegalBench, presents an empirical evaluation of 20 open-source and commercial LLMs, and illustrates the types of research explorations LegalBench enables.

The Software Heritage License Dataset (2022 Edition)

When software is released publicly, it is common to include with it either the full text of the license or licenses under which it is published, or a detailed reference to them. Therefore public licenses, including FOSS (free, open source software) licenses, are usually publicly available in source code repositories.Objective: To compile a dataset containing as many documents as possible that contain the text of software licenses, or references to the license terms. Once compiled, characterize the dataset so that it can be used for further research, or practical purposes related to license analysis.Method: Retrieve from Software Heritage-the largest publicly available archive of FOSS source code-all versions of all files whose names are commonly used to convey licensing terms. All retrieved documents will be characterized in various ways, using automated and manual analyses.Results: The dataset consists of 6.9 million unique license files. Additional metadata about shipped license files is also provided, making the dataset ready to use in various contexts, including: file length measures, MIME type, SPDX license (detected using ScanCode), and oldest appearance. The results of a manual analysis of 8102 documents is also included, providing a ground truth for further analysis. The dataset is released as open data as an archive file containing all deduplicated license files, plus several portable CSV files with metadata, referencing files via cryptographic checksums.Conclusions: Thanks to the extensive coverage of Software Heritage, the dataset presented in this paper covers a very large fraction of all software licenses for public code. We have assembled a large body of software licenses, characterized it quantitatively and qualitatively, and validated that it is mostly composed of licensing information and includes almost all known license texts. The dataset can be used to conduct empirical studies on open source licensing, training of automated license classifiers, natural language processing (NLP) analyses of legal texts, as well as historical and phylogenetic studies on FOSS licensing. It can also be used in practice to improve tools detecting licenses in source code.

MultiLegalSBD : A Multilingual Legal Sentence Boundary Detection Dataset

Abstract : Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130’000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available.